Аннотация к рабочей программе учебного предмета «Математика»

Программа по математике углублённого уровня для обучающихся на уровне среднего общего образования разработана на основе ФГОС СОО с учётом современных мировых требований, предъявляемых к математическому образованию, и традиций российского образования. Реализация программы по математике обеспечивает овладение ключевыми компетенциями, составляющими основу для саморазвития и непрерывного образования, целостность общекультурного, личностного и познавательного развития личности обучающихся. В программе по математике учтены идеи и положения «Концепции развития математического образования в Российской Федерации». В соответствии с названием концепции математическое образование должно, в частности, решать задачу обеспечения необходимого стране числа обучающихся, математическая подготовка которых достаточна для продолжения образования по различным направлениям, включая преподавание математики, математические исследования, работу в сфере информационных технологий и других, а также обеспечения для каждого обучающегося возможности достижения математической подготовки в соответствии с необходимым ему уровнем. Именно на решение этих задач нацелена программа по математике углублённого уровня. В эпоху цифровой трансформации всех сфер человеческой деятельности невозможно стать образованным современным человеком без хорошей математической подготовки. Это обусловлено тем, что в наши дни растёт число Федеральная рабочая программа Математика. 10-11 классы (углублённый уровень) 4 специальностей, связанных с непосредственным применением математики: и в сфере экономики, и в бизнесе, и в технологических областях, и даже в гуманитарных сферах. Таким образом, круг обучающихся, для которых математика становится значимым предметом, фундаментом образования, существенно расширяется. В него входят не только обучающиеся, планирующие заниматься творческой и исследовательской работой в области математики, информатики, физики, экономики и в других областях, но и те, кому математика нужна для использования в профессиях, не связанных непосредственно с ней. Прикладная значимость математики обусловлена тем, что её предметом являются фундаментальные структуры нашего мира: пространственные формы и количественные отношения, функциональные категории неопределённости, зависимости И OT простейших, усваиваемых непосредственном опыте, до достаточно сложных, необходимых для развития научных и технологических идей. Без конкретных математических знаний затруднено понимание принципов устройства и использования современной техники, восприятие и интерпретация разнообразной социальной, экономической, политической информации, малоэффективна повседневная практическая деятельность. Во многих сферах профессиональной деятельности требуются умения выполнять расчёты, составлять алгоритмы, применять формулы, проводить геометрические измерения и построения, читать, обрабатывать, интерпретировать и представлять информацию в виде таблиц, диаграмм и графиков, понимать вероятностный характер случайных событий. Одновременно с расширением сфер применения математики в современном обществе всё более важным становится математический стиль мышления, проявляющийся в определённых умственных навыках. В процессе изучения математики в арсенал приёмов и методов мышления человека естественным образом включаются индукция и дедукция, обобщение и конкретизация, анализ и синтез, классификация и систематизация, абстрагирование и аналогия. Объекты математических умозаключений, правила их конструирования раскрывают механизм логических построений, способствуют выработке умения формулировать, обосновывать и доказывать суждения, тем самым формируют логический стиль мышления. Ведущая роль принадлежит математике в формировании алгоритмической компоненты мышления и воспитании умений действовать по заданным алгоритмам, совершенствовать известные и конструировать новые. В процессе решения задач – основы для организации учебной деятельности на уроках математики – развиваются творческая и прикладная стороны мышления. Обучение математике даёт возможность развивать у обучающихся точную, рациональную и информативную речь, умение отбирать наиболее подходящие языковые, символические, графические средства для выражения суждений и наглядного их представления.

Необходимым компонентом общей культуры в современном толковании является общее знакомство с методами познания действительности, представление о предмете и методе математики, его отличиях от методов естественных и гуманитарных наук, об особенностях применения математики для решения научных и прикладных задач. Таким образом, математическое образование вносит свой вклад в формирование общей культуры человека. Изучение математики способствует эстетическому воспитанию человека, математических пониманию красоты изящества рассуждений, геометрических форм, усвоению идеи симметрии. Приоритетными целями обучения математике в 10–11 классах на углублённом уровне продолжают оставаться: формирование центральных математических понятий (число, величина, геометрическая фигура, производная, переменная, вероятность, интеграл), обеспечивающих функция, преемственность и перспективность математического образования обучающихся; подведение обучающихся на доступном для них уровне к осознанию взаимосвязи математики и окружающего мира, пониманию математики как части общей культуры человечества; развитие интеллектуальных и творческих способностей обучающихся, познавательной активности, исследовательских умений, критичности мышления, интереса к изучению математики; формирование функциональной математической грамотности: умения распознавать математические аспекты в реальных жизненных ситуациях и при изучении других учебных предметов, проявления зависимостей и закономерностей, формулировать их на языке математики и создавать математические модели, применять освоенный математический аппарат для решения практико-ориентированных задач, интерпретировать и оценивать полученные результаты. Основными линиями содержания математики в 10–11 классах углублённого уровня являются: «Числа и вычисления», «Алгебра» («Алгебраические выражения», «Уравнения и неравенства»), «Начала математического анализа», «Геометрия» («Геометрические фигуры и их свойства», «Измерение геометрических величин»), «Вероятность и статистика». Данные линии развиваются параллельно, каждая в соответствии с собственной логикой, однако не независимо одна от другой, а в тесном контакте и взаимодействии. Кроме этого, их объединяет логическая составляющая, традиционно присущая математике пронизывающая все математические курсы и содержательные линии. Сформулированное во ФГОС СОО требование «умение оперировать понятиями: определение, аксиома, теорема, следствие, свойство, признак, доказательство, равносильные формулировки, умение формулировать обратное и противоположное утверждение, приводить примеры и контрпримеры, использовать метод математической индукции, проводить доказательные рассуждения при решении задач, оценивать логическую правильность рассуждений» относится ко всем учебным курсам, а формирование логических умений распределяется по всем годам обучения на уровне среднего общего образования. В соответствии с ФГОС СОО математика является обязательным предметом на данном уровне образования. Настоящей программой по математике предусматривается изучение учебного предмета «Математика» в рамках трёх учебных курсов: «Алгебра и начала математического анализа», «Геометрия», «Вероятность и статистика». Формирование логических умений осуществляется на протяжении всех лет обучения на уровне среднего общего образования, а элементы логики включаются в содержание всех названных выше учебных курсов. Общее количество часов, направленных на изучение математики на углубленном уровне – 544: в 10 классе – 272 часа (8 часов в неделю), в 11 классе - 272 часа (8 часов в неделю).

Учебный курс «Алгебра и начала математического анализа» является одним из наиболее значимых в программе среднего общего образования, поскольку, с одной стороны, он обеспечивает инструментальную базу для изучения всех естественно-научных курсов, а с другой стороны, формирует логическое и абстрактное мышление обучающихся на уровне, необходимом для освоения информатики, обществознания, истории, словесности и других дисциплин. В рамках данного учебного курса обучающиеся овладевают универсальным языком современной науки, которая формулирует свои достижения в математической форме. Учебный курс алгебры и начал математического анализа закладывает основу для успешного овладения законами физики, химии, биологии, понимания основных тенденций развития экономики и общественной жизни, позволяет ориентироваться в современных цифровых и компьютерных технологиях, уверенно использовать их для дальнейшего образования и в повседневной жизни. В то же время овладение абстрактными и логически строгими конструкциями алгебры и математического анализа развивает умение находить закономерности, обосновывать истинность, доказывать утверждения с помощью индукции и рассуждать дедуктивно, использовать обобщение и конкретизацию, абстрагирование и аналогию, формирует креативное и критическое мышление. В ходе изучения учебного курса «Алгебра и начала математического анализа» обучающиеся получают новый опыт решения прикладных задач, самостоятельного построения математических моделей реальных ситуаций, интерпретации полученных решений, знакомятся с примерами математических закономерностей в природе, науке и искусстве, с выдающимися математическими открытиями и их авторами. Учебный курс обладает значительным воспитательным потенциалом, который реализуется как через учебный материал, способствующий формированию научного мировоззрения, так и через специфику учебной деятельности, требующей продолжительной концентрации внимания, самостоятельности, аккуратности и ответственности за полученный результат. В основе методики обучения алгебре и началам математического анализа лежит деятельностный принцип обучения. В структуре учебного курса «Алгебра и начала математического выделены следующие содержательно-методические линии: анализа» графики», «Уравнения неравенства», вычисления», «Функции И «Начала математического анализа», «Множества и логика». Все основные содержательнометодические линии изучаются на протяжении двух лет обучения на уровне среднего общего образования, естественно дополняя друг друга и постепенно насыщаясь новыми темами и разделами. Данный учебный курс является интегративным, поскольку объединяет в себе содержание нескольких математических дисциплин, таких как алгебра, тригонометрия, математический анализ, теория множеств, математическая логика и другие. По мере того как обучающиеся овладевают всё более широким математическим аппаратом, у них последовательно формируется и совершенствуется умение строить математическую модель реальной ситуации, применять знания, полученные при изучении учебного курса, для решения самостоятельно сформулированной математической задачи, а затем интерпретировать свой ответ. Содержательно-методическая линия «Числа и вычисления» завершает формирование навыков использования действительных чисел, которое было начато на уровне основного общего образования. На уровне среднего общего образования особое внимание уделяется формированию навыков рациональных вычислений, включающих в себя использование различных форм записи числа, умение делать прикидку, выполнять приближённые вычисления, оценивать числовые выражения, работать с математическими константами. Знакомые обучающимся множества натуральных, целых, рациональных и действительных чисел дополняются множеством комплексных чисел. В каждом из этих множеств рассматриваются свойственные ему специфические задачи и операции: деление нацело, оперирование остатками на множестве целых чисел, особые свойства рациональных и иррациональных чисел, арифметические операции, а также извлечение корня натуральной степени на множестве комплексных чисел. Благодаря последовательному расширению круга используемых чисел и знакомству с возможностями

их применения для решения различных задач формируется представление о единстве математики как науки и её роли в построении моделей реального мира, широко используются обобщение и конкретизация. Линия «Уравнения и неравенства» реализуется на протяжении всего обучения на уровне среднего общего образования, поскольку в каждом разделе Программы предусмотрено решение соответствующих задач. В результате обучающиеся овладевают различными методами решения рациональных, иррациональных, показательных, логарифмических и тригонометрических уравнений, неравенств и систем, а также задач, содержащих параметры. Полученные умения широко используются при исследовании функций с помощью производной, при решении прикладных задач и задач на нахождение наибольших и наименьших значений функции. Данная содержательная линия включает в себя также формирование умений выполнять расчёты по формулам, преобразования рациональных, иррациональных и тригонометрических выражений, а выражений, содержащих степени логарифмы. также И Благодаря алгебраического материала происходит дальнейшее развитие алгоритмического и абстрактного мышления обучающихся, формируются навыки дедуктивных рассуждений, работы с символьными формами, представления закономерностей и зависимостей в виде равенств и неравенств. Алгебра предлагает эффективные инструменты для решения практических и естественно-научных задач, наглядно демонстрирует свои возможности как языка науки. Содержательно-методическая линия «Функции и графики» тесно переплетается с другими линиями учебного курса, поскольку в каком-то смысле задаёт Изучение последовательность изучения материала. степенной, логарифмической и тригонометрических функций, их свойств и графиков, использование функций для решения задач из других учебных предметов и реальной жизни тесно связано как с математическим анализом, так и с решением уравнений и неравенств. При этом большое внимание уделяется формированию умения выражать формулами зависимости между различными величинами, исследовать полученные функции, строить их графики. Материал этой содержательной линии нацелен на развитие умений и навыков, позволяющих выражать зависимости между величинами в различной аналитической, графической и словесной. Его изучение способствует развитию алгоритмического мышления, способности к обобщению и конкретизации, использованию аналогий. Содержательная линия «Начала математического анализа» существенно расширить круг как математических, так и прикладных задач, доступных обучающимся, так как у них появляется возможность строить графики сложных функций, определять их наибольшие и наименьшие значения, вычислять площади фигур и объёмы тел, находить скорости и ускорения процессов. Данная содержательная линия открывает новые возможности построения математических моделей реальных ситуаций, позволяет находить наилучшее решение в прикладных, в том числе социально-экономических, задачах. Знакомство с основами математического анализа способствует развитию абстрактного, формально-логического и креативного мышления, формированию умений распознавать проявления законов математики в науке, технике и искусстве. Обучающиеся узнают о выдающихся результатах, полученных в ходе развития математики как науки, и об их авторах. Содержательно-методическая линия «Множества и логика» включает в себя элементы теории множеств и математической логики. Теоретико-множественные представления пронизывают весь курс школьной математики и предлагают наиболее универсальный язык, объединяющий все разделы математики и её приложений, они связывают разные математические дисциплины и их приложения в единое целое. Поэтому важно дать возможность обучающемуся понимать теоретико-множественный язык современной математики и использовать его для выражения своих мыслей. Другим важным признаком математики как науки следует признать свойственную ей строгость обоснований и следование определённым правилам построения доказательств. Знакомство с элементами математической логики способствует развитию логического мышления обучающихся, позволяет им строить свои рассуждения на основе логических правил,

формирует навыки критического мышления. В учебном курсе «Алгебра и начала математического анализа» присутствуют основы математического моделирования, которые призваны способствовать формированию навыков построения моделей реальных ситуаций, исследования этих моделей с помощью аппарата алгебры и математического анализа, интерпретации полученных результатов. Такие задания вплетены в каждый из разделов программы, поскольку весь материал учебного курса широко используется для решения прикладных задач. При решении реальных практических задач обучающиеся развивают наблюдательность, умение находить закономерности, абстрагироваться, использовать аналогию, обобщать и конкретизировать проблему. Деятельность по формированию навыков решения прикладных задач организуется в процессе изучения всех тем учебного курса «Алгебра и начала математического анализа». На изучение учебного курса «Алгебра и начала математического анализа» отводится 272 часа: в 10 классе — 136 часов (4 часа в неделю), в 11 классе — 136 часов (4 часа в неделю).

ФЕДЕРАЛЬНАЯ РАБОЧАЯ ПРОГРАММА УЧЕБНОГО КУРСА «ГЕОМЕТРИЯ»

Геометрия является одним из базовых курсов на уровне среднего общего образования, так как обеспечивает возможность изучения дисциплин естественнонаучной направленности и предметов гуманитарного цикла. Поскольку логическое мышление, формируемое при изучении обучающимися понятийных основ геометрии, при доказательстве теорем и построении цепочки логических утверждений при решении геометрических задач, умение выдвигать и опровергать гипотезы непосредственно используются при решении задач естественно-научного цикла, в частности физических задач. Цель освоения программы учебного курса «Геометрия» на углублённом уровне – развитие индивидуальных способностей обучающихся при изучении геометрии, как составляющей предметной области «Математика и информатика» через обеспечение возможности приобретения и использования более глубоких геометрических знаний и действий, специфичных геометрии, и необходимых для успешного профессионального образования, связанного с использованием математики. Приоритетными задачами курса геометрии на углублённом уровне, расширяющими и усиливающими курс базового уровня, являются: расширение представления о геометрии как части мировой культуры и формирование осознания взаимосвязи геометрии с окружающим миром; формирование представления о пространственных фигурах как о важнейших математических моделях, позволяющих описывать и изучать разные явления окружающего мира, знание понятийного аппарата по разделу «Стереометрия» учебного курса геометрии; формирование умения владеть основными понятиями о пространственных фигурах и их основными свойствами, знание теорем, формул и умение их применять, умения доказывать теоремы и находить нестандартные способы решения задач; формирование умения распознавать на чертежах, моделях и в реальном мире многогранники и тела вращения, конструировать геометрические модели; формирование понимания аксиоматического построения математических теорий, формирование понимания роли аксиоматики при проведении рассуждений; формирование умения владеть методами доказательств и алгоритмов решения, умения их применять, проводить доказательные рассуждения в ходе решения стереометрических задач и задач с практическим содержанием, формирование представления о необходимости доказательств при обосновании математических утверждений и роли аксиоматики в проведении дедуктивных рассуждений; развитие и совершенствование интеллектуальных и творческих способностей обучающихся, познавательной активности, исследовательских умений, критичности мышления, интереса к изучению геометрии; формирование функциональной грамотности, релевантной геометрии: умения распознавать проявления геометрических понятий, объектов и закономерностей в реальных жизненных ситуациях и при изучении других учебных предметов, проявления зависимостей и закономерностей, моделирования реальных ситуаций, исследования построенных моделей, интерпретации полученных

результатов. Основными содержательными линиями учебного курса «Геометрия» в 10–11 классах являются: «Прямые и плоскости в пространстве», «Многогранники», «Тела вращения», «Векторы и координаты в пространстве», «Движения в пространстве». Сформулированное в ФГОС СОО требование «уметь оперировать понятиями», релевантных геометрии на углублённом уровне обучения в 10-11 классах, относится ко всем содержательным линиям учебного курса, а формирование логических умений распределяется не только по содержательным линиям, но и по годам обучения. Содержание образования, соответствующее предметным результатам освоения Федеральной рабочей программы, распределённым по годам обучения, структурировано таким образом, чтобы ко всем основным, принципиальным вопросам обучающиеся обращались неоднократно. Это позволяет организовать овладение геометрическими понятиями последовательно и поступательно, с соблюдением принципа преемственности, а новые знания включать в общую систему геометрических представлений обучающихся, расширяя и углубляя её, образуя прочные множественные связи. Переход к изучению геометрии на углублённом уровне позволяет: создать условия для дифференциации обучения, построения индивидуальных образовательных программ, обеспечить углублённое изучение геометрии как составляющей учебного предмета «Математика»; подготовить обучающихся к продолжению изучения математики с учётом выбора будущей профессии, обеспечивая преемственность между общим и профессиональным образованием. На изучение учебного курса «Геометрия» на углубленном уровне отводится 204 часа: в 10 классе -102 часа (3 часа в неделю), в 11 классе -102 часа (3 часа в неделю).

ФЕДЕРАЛЬНАЯ РАБОЧАЯ ПРОГРАММА УЧЕБНОГО КУРСА «ВЕРОЯТНОСТЬ И СТАТИСТИКА»

Учебный курс «Вероятность и статистика» углублённого уровня является продолжением и развитием одноименного учебного курса углублённого уровня на уровне среднего общего образования. Учебный курс предназначен для формирования у обучающихся статистической культуры и понимания роли теории вероятностей как математического инструмента для изучения случайных событий, величин и процессов. При изучении курса обогащаются представления обучающихся о методах исследования изменчивого мира, развивается понимание значимости и общности математических методов познания как неотъемлемой части современного естественно-научного мировоззрения. Содержание учебного курса направлено на закрепление знаний, полученных при изучении курса на уровне основного общего образования, и на развитие представлений о случайных величинах и взаимосвязях между ними на важных примерах, сюжеты которых почерпнуты из окружающего мира. В результате у обучающихся должно сформироваться представление о наиболее употребительных и общих математических моделях, используемых для описания антропометрических и демографических величин, погрешностей в различные рода измерениях, длительности безотказной работы технических устройств, характеристик массовых явлений и процессов в обществе. Учебный курс является базой для освоения вероятностно-статистических методов, необходимых специалистам не только инженерных специальностей, но также социальных и психологических, поскольку современные общественные науки в значительной мере используют аппарат анализа больших данных. Центральную часть учебного курса занимает обсуждение закона больших чисел – фундаментального закона природы, имеющего математическую формализацию. В соответствии с указанными целями в структуре учебного курса «Вероятность и статистика» на углублённом уровне выделены основные содержательные линии: «Случайные события и вероятности» и «Случайные величины и закон больших чисел». Помимо основных линий в учебный курс включены элементы теории графов и теории множеств, необходимые для полноценного освоения материала данного учебного курса и смежных математических учебных курсов. Содержание линии «Случайные события и вероятности» служит основой для формирования представлений о

распределении вероятностей между значениями случайных величин. Важную часть в этой содержательной линии занимает изучение геометрического и биномиального распределений и знакомство с их непрерывными аналогами – показательным и нормальным распределениями

Темы, связанные с непрерывными случайными величинами и распределениями, акцентируют внимание обучающихся на описании и изучении случайных явлений с помощью непрерывных функций. Основное внимание уделяется показательному и нормальному распределениям. В учебном курсе предусматривается ознакомительное изучение связи между случайными величинами и описание этой связи с помощью коэффициента корреляции и его выборочного аналога. Эти элементы содержания развивают тему «Диаграммы рассеивания», изученную на уровне основного общего образования, и во многом опираются на сведения из курсов алгебры и геометрии. Ещё один ознакомительном содержания, который предлагается на последовательность случайных независимых событий, наступающих в единицу времени. Ознакомление с распределением вероятностей количества таких событий носит развивающий характер и является актуальным для будущих абитуриентов, поступающих на учебные специальности, связанные с общественными науками, психологией и управлением. На изучение учебного курса «Вероятность и статистика» на углубленном уровне отводится 68 часов: в 10 классе -34 часа (1 час в неделю), в 11 классе -34 часа (1 час в неделю).